
GateKeeper: Transparent Placement of Big Data
Objects in Hybrid Managed Heaps

Iacovos G. Kolokasis
kolokasis@ics.forth.gr

Foivos Zakkak
fzakkak@redhat.com

Shoaib Akram
shoaib.akram@anu.edu.au

Polyvios Pratikakis
polyvios@ics.forth.gr

Angelos Bilas
bilas@ics.forth.gr

UNIVERSITY
OF CRETE

2

Analytics frameworks need large managed heaps

EuroDW ’24

▪ Analytics frameworks use managed runtimes

▪ To process large amounts of data they need large
heaps

▪ DRAM in a single server scales slower than data
growth!

▪ Fast storage devices are desirable for processing
▪ Provide higher capacity than DRAM

2018 2019 2020 2021 2022

108

109

1010

1011

1012

#
 o

f p
ar

am
et

er
s

(Source: Micron’s Perspective on Impact of CXL on DRAM Bit Growth Rate Report)

Future
projection

(Source: AI and memory wall)

3

Common practice: Move objects over fast storage devices

EuroDW ’24

▪ Analytics frameworks offload objects on fast storage
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

JVM

Heap

DRAM

NVMe SSD

S/D

3

Common practice: Move objects over fast storage devices

EuroDW ’24

▪ Analytics frameworks offload objects on fast storage
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

▪ Recent work, extend managed heaps beyond DRAM

(hybrid heaps)
▪ Direct access to objects → No S/D
▪ Two managed heaps → No GC scans over the device

JVM

Heap

DRAM

NVMe SSD

S/D

JVM

Fast heap (H1) Slow heap (H2)

DRAM Page Cache

NVMe SSD

3

Common practice: Move objects over fast storage devices

EuroDW ’24

▪ Analytics frameworks offload objects on fast storage
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

▪ Recent work, extend managed heaps beyond DRAM

(hybrid heaps)
▪ Direct access to objects → No S/D
▪ No GC scans over the storage device

▪ Challenge: Find objects for moving to the device
▪ Cope with slow device accesses

JVM

Heap

DRAM

NVMe SSD

S/D

JVM

Fast heap (H1) Slow heap (H2)

DRAM Page Cache

NVMe SSD

4

Existing object selection approaches

EuroDW ’24

Application modification

Application agnostic

4

Existing object selection approaches

EuroDW ’24

Application modification

Application agnostic

Programming models
▪ Provide application specific knowledge
▪ Significant effort for application writing

JVM

Just-in-time (JIT) Compiler
Code instrumentation via JIT compiler

▪ Extra instructions before each load/store operation
▪ Significant runtime overhead

OS
Page faults

▪ Protect/unprotect pages in the virtual address space
▪ Signal handling and page faults overheads

Garbage Collector (GC)

Transparent placement of big data objects in hybrid heaps

5EuroDW ’24

▪ Decide which objects to move from H1 to H2
▪ Avoid code instrumentation and page fault overheads

▪ Leverage storage capacity to reclaim objects lazily
▪ Reclaim dead objects without GC scans on H2

▪ Fix wrong decisions (fallback mechanism)
▪ Identify objects that increase I/O traffic
▪ Transfer objects from H2 to H1 without scanning H2

JVM

Fast heap (H1) Slow heap (H2)

DRAM Page Cache

NVMe SSD

Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects

Young gen.

Old gen.

Fast heap (H1) Slow heap (H2)

Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects

▪ We identify during GC long-lived objects
▪ Increase the age of each object (epochs)

▪ High memory pressure in H1
▪ Move objects from H1 to H2
▪ Transfer objects with earliest epoch

Young gen.

Old gen.

Fast heap (H1) Slow heap (H2)

Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects

▪ We identify during GC long-lived objects
▪ Increase the age of each object (epochs)

▪ High memory pressure in H1
▪ Move objects from H1 to H2
▪ Transfer objects with earliest epoch

Young gen.

Old gen.

Fast heap (H1) Slow heap (H2)

Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects

▪ We identify during GC long-lived objects
▪ Increase the age of each object (epochs)

▪ High memory pressure in H1
▪ Move objects from H1 to H2
▪ Transfer objects with earliest epoch

Young gen.

Old gen.

Fast heap (H1) Slow heap (H2)

� Goal: Reclaim dead objects without GC scans

▪ GateKeeper organize H2 in fixed-sized regions
▪ Objects from same root in the same region
▪ Reclaim whole regions (bulk free)

▪ Per region DRAM metadata (no object access)
▪ Live bit → region liveness

▪ GC identifies H2 live regions
▪ Free regions by zeroing regions metadata

7

Leverage storage capacity to free objects lazily

EuroDW ’24

Fast Heap (H1) Slow Heap (H2)

JVM metadata (DRAM)

JVM

Region 0 Region 1

Region 0 Region 1

Live LiveLive

� Goal: Identify objects that increase I/O traffic

▪ Portion of DRAM is a cache for H2 to reduce slow accesses
▪ Require cache locality → workloads behavior changing

▪ We use a kernel module to track H2 active pages
▪ Maintain metadata per region
▪ Track dirty pages

▪ GateKeeper scans H2 page cache on every minor GC
▪ Mutator threads are stopped
▪ No synchronization interference with GC threads

8

Fix wrong placement decision

EuroDW ’24

� Goal: Transfer objects from H2 to H1 without scanning H2

▪ Transfers from H2 to H1 needs objects references update
▪ Requires scans to H2 → high I/O traffic

▪ Transfer primitive arrays and leaf objects to H2
▪ Alleviate references between H2 objects
▪ Only forward references (H1 to H2) exists

▪ Moving primitive objects from H2 to H1 require only
forward references update
▪ GC marking phase: finds forward references

9

Fix wrong decision placement

EuroDW ’24

Young gen.

Old gen.

Fast heap (H1) Slow heap (H2)

▪ Data growth is higher than DRAM capacity scaling

▪ Analytics frameworks require large managed heaps to process very big datasets

▪ Fast storage devices (e.g., NVMe SSDs) provide higher capacity than DRAM

▪ Extend managed heaps over NVMe SSD to cope with data growth

▪ GateKeeper: Decide transparently what object to move from the fast to the slow tier
▪ With low runtime overhead
▪ Transfer objects from the slow to the fast tier efficiently

10

Key Takeaway

EuroDW ’24

GateKeeper: Transparent Placement of Big Data Objects
in Hybrid Managed Heaps

We thankfully acknowledge the support of the European Commision projects AERO (GA No 10048318)
Iacovos G. Kolokasis is supported by the Meta Research PhD Fellowship (2022 – 2024)

kolokasis@ics.forth.gr

