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Analytics frameworks need large managed heaps 

EuroDW ’24

▪ Analytics frameworks use managed runtimes

▪ To process large amounts of data  they need large 
heaps 

▪ DRAM in a single server scales slower than data 
growth!
 

▪ Fast storage devices are desirable for processing 
▪ Provide higher capacity than DRAM
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Common practice: Move objects over fast storage devices
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▪ Analytics frameworks offload objects on fast storage 
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

JVM

Heap

DRAM

NVMe SSD

S/D



3

Common practice: Move objects over fast storage devices

EuroDW ’24

▪ Analytics frameworks offload objects on fast storage 
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

 
▪ Recent work, extend managed heaps beyond DRAM 

(hybrid heaps)
▪ Direct access to objects → No S/D
▪ Two managed heaps → No GC scans over the device
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▪ Analytics frameworks offload objects on fast storage 
devices (off DRAM)
▪ Transform objects to byte stream
▪ High serialization/deserialization (S/D) overhead

 
▪ Recent work, extend managed heaps beyond DRAM 

(hybrid heaps)
▪ Direct access to objects → No S/D
▪ No GC scans over the storage device

▪ Challenge: Find objects for moving to the device
▪ Cope with slow device accesses
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Existing object selection approaches
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Application modification

Application agnostic
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Existing object selection approaches
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Application modification

Application agnostic

Programming models
▪ Provide application specific knowledge
▪ Significant effort for application writing

JVM

Just-in-time (JIT) Compiler
Code instrumentation via JIT compiler

▪ Extra instructions before each load/store operation
▪ Significant runtime overhead

OS
Page faults

▪ Protect/unprotect pages in the virtual address space
▪ Signal handling and page faults overheads

Garbage Collector (GC)



Transparent placement of big data objects in hybrid heaps
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▪ Decide which objects to move from H1 to H2 
▪ Avoid code instrumentation and page fault overheads

▪ Leverage storage capacity to reclaim objects lazily
▪ Reclaim dead objects without GC scans on H2

▪ Fix wrong decisions (fallback mechanism)
▪ Identify objects that increase I/O traffic
▪ Transfer objects from H2 to H1 without scanning H2
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Decide which objects to move from H1 to H2
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� Goal: Avoid code instrumentation and page fault overhead



Decide which objects to move from H1 to H2

6EuroDW ’24

� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects
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� Goal: Avoid code instrumentation and page fault overhead

▪ Fast heap is a generational heap
▪ Young generation for newly created objects
▪ Old generation for mature objects

▪ We identify during GC long-lived objects
▪ Increase the age of each object (epochs)

▪ High memory pressure in H1
▪ Move objects from H1 to H2
▪ Transfer objects with earliest epoch
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� Goal: Reclaim dead objects without GC scans

▪ GateKeeper organize H2 in fixed-sized regions
▪ Objects from same root in the same region
▪ Reclaim whole regions (bulk free)

▪ Per region DRAM metadata (no object access)
▪ Live bit → region liveness

▪ GC identifies H2 live regions
▪ Free regions by zeroing regions metadata
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Leverage storage capacity to free objects lazily
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� Goal: Identify objects that increase I/O traffic

▪ Portion of DRAM is a cache for H2 to reduce slow accesses
▪ Require cache locality → workloads behavior changing

▪ We use a kernel module to track H2 active pages
▪ Maintain metadata per region
▪ Track dirty pages

▪ GateKeeper scans H2 page cache on every minor GC
▪ Mutator threads are stopped
▪ No synchronization interference with GC threads
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Fix wrong placement decision
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� Goal: Transfer objects from H2 to H1 without scanning H2

▪ Transfers from H2 to H1 needs objects references update
▪ Requires scans to H2 → high I/O traffic

▪ Transfer primitive arrays and leaf objects to H2
▪ Alleviate references between H2 objects
▪ Only forward references (H1 to H2) exists 

▪ Moving primitive objects from H2 to H1 require only 
forward references update
▪ GC marking phase: finds forward references
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Fix wrong decision placement
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▪ Data growth is higher than DRAM capacity scaling

▪ Analytics frameworks require large managed heaps to process very big datasets

▪ Fast storage devices (e.g., NVMe SSDs) provide higher capacity than DRAM

▪ Extend managed heaps over NVMe SSD to cope with data growth

▪ GateKeeper: Decide transparently what object to move from the fast to the slow tier
▪ With low runtime overhead
▪ Transfer objects from the slow to the fast tier efficiently
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Key Takeaway
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