3FORTH

INSTITUTE OF COMPUTER SCIENCE

<V > I
T .| Australian
{38095 UNIVERSITY ; -
(1 el == National Red Hat
=~ University

GateKeeper: Transparent Placement of Big Data

Objects in Hybrid Managed Heaps

lacovos G. Kolokasis Shoaib Akram Foivos Zakkak
kolokasis@ics.forth.gr shoaib.akram@anu.edu.au fzakkak@redhat.com
Polyvios Pratikakis Angelos Bilas

polyvios@ics.forth.gr bilas@ics.forth.gr

Analytics frameworks need large managed heaps

0%
. . (iShart. MT-NLG “
= Analytics frameworks use managed runtimes 10" arrig /M
2 100 vrn
IS 3 //;f?"/
* Toprocess large amounts of data they need large £ —
heaps _z 0] R, ALBERTg @FELECTRA
= DRAMinasingle server scales slower than data 2018 2019 2020 2021 2022
grOWthl (Source: Al and memory wall)
’ 100
= Fast storage devices are desirable for processing g *
= Provide higher capacity than DRAM z %
§ o5 O SN
g Future
2 0 projection

NN NI I R S A i
YT T 5 P P

(Source: Micron's Perspective on Impact of CXL on DRAM Bit Growth Rate Report)

EuroDW 24 2

Common practice: Move objects over fast storage devices
JVM

= Analytics frameworks offload objects on fast storage
devices (off DRAM) Heap

= Transform objects to byte stream

S/D

= High serialization/deserialization (S/D) overhead D§AM

EuroDW 24 S

Common practice: Move objects over fast storage devices
JVM

= Analytics frameworks offload objects on fast storage
devices (off DRAM) Heap

= Transform objects to byte stream

S/D

= High serialization/deserialization (S/D) overhead D§AM

= Recent work, extend managed heaps beyond DRAM

(hybrid heaps) JVM
= Direct access toobjects — No S/D

) Fast heap (H1) || Slow heap (H2)
= Two managed heaps — No GC scans over the device 5 I

DRAM Page Cache
EuroDW 24 3

Common practice: Move objects over fast storage devices
JVM

= Analytics frameworks offload objects on fast storage
devices (off DRAM) Heap

= Transform objects to byte stream |

S/D

= High serialization/deserialization (S/D) overhead D§AM

= Recent work, extend managed heaps beyond DRAM
(hybrid heaps) JVM

= Direct access toobjects — No S/D

. Fast heap (H1) || Slow heap (H2)
= No GC scans over the storage device 7 I

= Challenge: Find objects for moving to the device DRAM _F_’:age Cache |

= Cope with slow device accesses !

EuroDW 24 S

Existing object selection approaches

Application modification

Application agnostic

EuroDW 24 4

Existing object selection approaches

Application modification

Programming models

= Provide application specific knowledge | "\Z@
= Significant effort for application writing Spark’ Flink sN€04] it
Application agnostc =~ o

Code instrumentation via JIT compiler
= Extrainstructions before each load/store operation

Just-in-time (JIT) Compiler

= Significant runtime overhead
Garbage Collector (GC)

Page faults
= Protect/unprotect pages in the virtual address space 0S

= Signal handling and page faults overheads

EuroDW 24 4

Transparent placement of big data objects in hybrid heaps

= Decide which objects to move from H1to H2
= Avoid code instrumentation and page fault overheads

JVM
= |everage storage capacity to reclaim objects lazily
= Reclaim dead objects without GC scans on H2

Fast heap (H1) || Slow heap (H2)

= Fix wrong decisions (fallback mechanism) DRAM _I;;ge Cache |
= Ildentify objects that increase 1/0 traffic |

S—
= Transfer objects from H2 to H1 without scanning H2

EuroDW 24 5

Decide which objects to move from H1to H2

1 Goal: Avoid code instrumentation and page fault overhead

EuroDW 24 6

Decide which objects to move from H1to H2

1 Goal: Avoid code instrumentation and page fault overhead

= Fast heapis agenerational heap Fast heap (H1) Slow heap (H2)
Young gen.

= Young generation for newly created objects
= 0Old generation for mature objects

EuroDW 24 6

Decide which objects to move from H1to H2

1 Goal: Avoid code instrumentation and page fault overhead

= Fast heapis agenerational heap Fast heap (H1) Slow heap (H2)
Young gen.

= Young generation for newly created objects
= 0Old generation for mature objects

= We identify during GC long-lived objects
= Increase the age of each object (epochs)

= High memory pressure in H1

= Move objects from H1to H2

= Transfer objects with earliest epoch

EuroDW 24 6

Decide which objects to move from H1to H2

1 Goal: Avoid code instrumentation and page fault overhead

Fast heap is a generational heap Fast heap (H1) Slow heap (H2)
Young gen.

= Young generation for newly created objects
= (Old generation for mature objects

We identify during GC long-lived objects
= Increase the age of each object(epochs)

High memory pressure in H1

= Move objects from H1to H2

= Transfer objects with earliest epoch

EuroDW 24 6

Decide which objects to move from H1to H2

1 Goal: Avoid code instrumentation and page fault overhead

= Fast heapis a generational heap
= Young generation for newly created objects
= 0Old generation for mature objects

= We identify during GC long-lived objects
= Increase the age of each object (epochs)

= High memory pressure in H1
= Move objects from H1to H2
= Transfer objects with earliest epoch

Fast heap (H1)

Slow heap (H2)

Young gen.

§6 6

EuroDW 24

Leverage storage capacity to free objects lazily

1 Goal: Reclaim dead objects without GC scans

JVM
= GateKeeper organize H2 in fixed-sized regions | rastHeap (H1) Slow Heap (H2)

= (Objects from same root in the same region Region0 | Region

= Reclaim whole regions (bulk free) O CD\() CD\()
= Perregion DRAM metadata(no object access)

= Live bit — region liveness JVMmetadata(DRAM) """"""""""""""

Region O Region 1

= GCidentifies HZ live regions

Live Live

= Freeregions by zeroing regions metadata

EuroDW 24 7

Fix wrong placement decision

1 Goal: Identify objects that increase 1/0 traffic

= Portion of DRAM is a cache for H2 to reduce slow accesses
= Require cache locality — workloads behavior changing

= We use a kernel module to track H2 active pages
= Maintain metadata per region
= Track dirty pages

= GateKeeper scans H2 page cache on every minor GC
= Mutator threads are stopped
= No synchronization interference with GC threads

EuroDW 24 8

Fix wrong decision placement

1 Goal: Transfer objects from H2 to H1 without scanning H2

Fastheap(H1) Slow heap (H2)
Young gen.

= Transfers from H2 to H1 needs objects references update
= Requires scans to HZ2 — high I/0 traffic

= Transfer primitive arrays and leaf objects to H2
= Alleviate references between H2 objects
= Only forward references (H1to H2) exists

= Moving primitive objects from H2 to H1require only
forward references update

= GC marking phase: finds forward references

EuroDW 24 9

Key Takeaway

= Data growth is higher than DRAM capacity scaling

= Analytics frameworks require large managed heaps to process very big datasets
= Fast storage devices(e.g., NVMe SSDs) provide higher capacity than DRAM

= Extend managed heaps over NVMe SSD to cope with data growth

= (GateKeeper: Decide transparently what object to move from the fast to the slow tier
= With low runtime overhead
= Transfer objects from the slow to the fast tier efficiently

EuroDW 24 10

GateKeeper: Transparent Placement of Big Data Objects
in Hybrid Managed Heaps

kolokasis@ics.forth.gr

We thankfully acknowledge the support of the European Commision projects AERO (GA No 10048318)
lacovos G. Kolokasis is supported by the Meta Research PhD Fellowship (2022 - 2024)

