
TeraHeap: Reducing Memory Pressure in Managed Big Data
Frameworks

Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram, Christos Kozanitis, Anastasios Papagiannis,
Foivos S. Zakkak, Polyvios Pratikakis, and Angelos Bilas

Analytics Frameworks Need Large Heaps
• Analytics frameworks use managed runtimes

• To process large amount of data they need large heaps

• Large heaps are expensive and increase GC cost!

• DRAM is expensive in dollar cost, energy, and power

• GC requires expensive scans over large heaps

Today: Move Objects Off‐heap

JVM Managed Heap

DRAM

Serializa�on/ 
Deserializa�on

Disk

Serialization/Deserialization (S/D) is Terrible!

PR LR LgR

Spark Workloads

0

1000

2000

3000

4000

5000

6000

7000

E
x
e
c
u
ti

o
n
 T

im
e
 (

s
)

47%

Other S/D + I/O

Additional complications:

⌢ Serialization is not
supported for all objects

⌢Moving objects off‐heap
can be unsafe

Extend the Heap Over Storage

JVM

Managed Heap

Disk

GC GC

DRAM (Page Cache)
file-backed mmap()

⌣ Eliminate S/D cost

⌢ Increase GC cost

TeraHeap: Eliminates S/D Without Increasing GC Cost!

JVM

Regular Heap (H1)

Disk

file-backed mmap()
DRAM (Page Cache)DRAM

Second Heap (H2)
Region 0 Region N-1Region N-2

GC GC

Framework
h2_mark_root(obj, label) h2_move(label)

Region 1

⌣ Provide the illusion of a single managed heap

⌣ Eliminate S/D cost

⌣ Avoid GC scans in the device heap

Challenges

• Identify which objects to move to H2

• Reclaim dead objects in H2 without GC scans

• Track cross‐heap references with low I/O cost

Comparison With Same and Less Amount of DRAM

PR LR LgR PR SSSP
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Apache Spark Apache Giraph

Native TeraHeap

Key Takeaways
• Analytics frameworks deal with large
datasets using S/D

• TeraHeap improves Spark performance
by up to 54%

• TeraHeap improves Giraph performance
by up to 28%

• TeraHeap requires up to 4.6x less DRAM


