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Analytics Frameworks Need Large Heaps
• Analytics frameworks use managed runtimes

• To process large amount of data they need large heaps

• Large heaps are expensive and increase GC cost!

• DRAM is expensive in dollar cost, energy, and power

• GC requires expensive scans over large heaps

Today: Move Objects Off‐heap
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Serialization/Deserialization (S/D) is Terrible!
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Additional complications:

⌢ Serialization is not
supported for all objects

⌢Moving objects off‐heap
can be unsafe

Extend the Heap Over Storage
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⌣ Eliminate S/D cost

⌢ Increase GC cost

TeraHeap: Eliminates S/D Without Increasing GC Cost!

JVM

Regular Heap (H1)

Disk

file-backed mmap()
DRAM (Page Cache)DRAM

Second Heap (H2)
Region 0 Region N-1Region N-2

GC GC

Framework
h2_mark_root(obj, label) h2_move(label)

Region 1

⌣ Provide the illusion of a single managed heap

⌣ Eliminate S/D cost

⌣ Avoid GC scans in the device heap

Challenges

• Identify which objects to move to H2

• Reclaim dead objects in H2 without GC scans

• Track cross‐heap references with low I/O cost

Comparison With Same and Less Amount of DRAM
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Key Takeaways
• Analytics frameworks deal with large
datasets using S/D

• TeraHeap improves Spark performance
by up to 54%

• TeraHeap improves Giraph performance
by up to 28%

• TeraHeap requires up to 4.6x less DRAM


