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Big Data Frameworks Need More Memory

• Data grow at an exponential rate, but DRAM scales slower than the data growth

• Existing works extend the managed heap over NVMe SSD, NVM, or remote memory
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Static DRAM Division Limitation
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• Satic DRAM division cannot cope with
changing application behavior

• High GC: need space for the first heap
• High IO: need space for cache

DynaHeap: Dynamic Division of DRAM
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Controller: Mechanism to adjust memory between H1 and I/O cache
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Preliminary Results
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Key Takeaways

• Applications have different memory
requirements at different periods

• Static division of DRAM between H1 and
the cache for H2 cannot adatpt to
dynamic changing application behavior

• DynaHeap is on average 70% better
than TeraHeap


