

DynaHeap: Dynamic Division of DRAM between Heterogeneous Managed Heaps

Iacovos G. Kolokasis, Shoaib Akram, Foivos S. Zakkak, Polyvios Pratikakis, and Angelos Bilas

Big Data Frameworks Need More Memory

Static DRAM Division Limitation

- Data grow at an exponential rate, but DRAM scales slower than the data growth
- Existing works extend the managed heap over NVMe SSD, NVM, or remote memory

- + No object reference adjustment
- GC scans over the slow tier
- + Reduce GC scans over the slow tier
- Need object reference adjustment
- + Avoid GC scans over the slow tier
- + No object reference adjustment
- Static DRAM division

- Satic DRAM division cannot cope with changing application behavior
- High GC: need space for the first heap
- High IO: need space for cache

DynaHeap: Dynamic Division of DRAM

	Condition	Action
	High GC	Grow H1
	High GC and many objects can be moved to H2	Move H2
\rightarrow	High I/O	Shrink H1
	Unused memory	_
\rightarrow	Next GC event	-

	Reset actions
--	----------------------

Preliminary Results

Key Takeaways

- Applications have different memory requirements at different periods
- Static division of DRAM between H1 and the cache for H2 cannot adatpt to dynamic changing application behavior
- DynaHeap is on average 70% better than TeraHeap

∧e₹€