
DynaHeap: Dynamic Division of DRAM between
Heterogeneous Managed Heaps

Iacovos G. Kolokasis, Shoaib Akram, Foivos S. Zakkak, Polyvios Pratikakis, and Angelos Bilas

Big Data Frameworks Need More Memory

• Data grow at an exponential rate, but DRAM scales slower than the data growth

• Existing works extend the managed heap over NVMe SSD, NVM, or remote memory

Managed heap
Slow memory �er

A B C D

Fast memory �er
Cache
A B

+ No object reference
adjustment

− GC scans over the slow
tier

Old gen.
Slow memory �er

D

Fast memory �er
Young gen. Old gen.

A B C

+ Reduce GC scans over
the slow tier

− Need object reference
adjustment

Second heap
Slow memory �er

Fast memory �er
First heap Cache

A B C

C D

+ Avoid GC scans over the
slow tier

+ No object reference
adjustment

− Static DRAM division

Static DRAM Division Limitation
SVM‐Spark

0

10

20

IO
w

a
it

 (
%

)

0 2000 4000

Time (s)

0

50

100

H
1

 U
s
a
g
e
 (

%
)

High GC High IO

• Satic DRAM division cannot cope with
changing application behavior

• High GC: need space for the first heap
• High IO: need space for cache

DynaHeap: Dynamic Division of DRAM

DRAM

JVM

NVMe SSD

Garbage Collector

DynaHeap

OS Page Cache (H2)H1

Controller

Second heap (H2)Primary heap (H1)

OS

Controller: Mechanism to adjust memory between H1 and I/O cache

Wait Transfer

Stable

Wait Shrink

Condi�on Ac�on
Grow H1

Shrink H1

Move H2

-

High GC

High GC and many objects can be moved to H2

High I/O

Unused memory

Wait Grow

Next GC event -

Reset ac�ons -

Preliminary Results

TC SVM BC PR CDLP WCC PR WCC
0.0

0.2

0.4

0.6

0.8

1.0

N
o
rm

a
li
z
e
d
 E

x
e
c
u
ti

o
n
 T

im
e

Apache Spark Apache Giraph GDS-Neo4j

TeraHeap DynaHeap

Key Takeaways

• Applications have different memory
requirements at different periods

• Static division of DRAM between H1 and
the cache for H2 cannot adatpt to
dynamic changing application behavior

• DynaHeap is on average 70% better
than TeraHeap


