
DynaHeap: Dynamic Division of DRAM between Heterogeneous Managed Heaps

Iacovos G. Kolokasis∗†

FORTH-ICS, Greece
Shoaib Akram‡

ANU, Australia
Foivos S. Zakkak

Red Hat, Inc.
Polyvios Pratikakis∗†

FORTH-ICS, Greece

Angelos Bilas∗†

FORTH-ICS, Greece

1 Motivation

With the high growth of data, managed big data frameworks,
such as Spark [21], Giraph [12], and Flink [6], need to pro-
cess larger datasets than server memory. However, the DRAM
available within each single server scales slower than the
data growth rate due to physical scaling limitations [11]. For
this purpose, existing solutions extend the managed heap of
big data applications over block-addressable fast storage de-
vices (e.g., NVMe SSDs) [3, 4, 7, 8, 14], byte-addressable
non-volatile memories (NVM) [1, 2, 9, 15, 18–20], or remote
memory [10, 16, 17]. While these alternatives offer higher
capacity than DRAM, they have higher latency and lower
throughput, constituting a slower memory tier. Existing sys-
tems use three main strategies for organizing the managed
heap over the fast and slow memory tiers: (1) uniform man-
aged heap with caching, (2) partitioned managed heap without
caching, and (3) partitioned managed heap with caching.

Systems in the first category [10, 16, 17] allocate the man-
aged heap over the slow tier and use the fast tier as a cache.
The OS hides memory tiers’ heterogeneity and transparently
fetches objects from the slow to the fast tier. This transparency
eliminates the need for the JVM to maintain extra data struc-
tures to track objects’ locations within the memory hierarchy
and to adjust object references during promotions or demo-
tions between the tiers. However, this approach leads to high
garbage collection (GC) cost because the garbage collector
scans objects in the slow tier, resulting in excessive swapping.

Systems in the second category [1, 2, 9, 15, 18, 19] partition
the memory address space into fast and slow tiers, reducing
swapping. They allocate the young generation and a portion
of the old generation of the managed heap on the fast tier
and the remaining on the slow tier. Instead of page swapping,
they explicitly move objects between the fast and the slow
tiers, which requires updating their references. This reference
adjustment becomes prohibitively expensive for frequent ob-
ject relocation as the garbage collector must scan objects in
the slow tier to update their references. Even using lazy refer-
ence adjustment with load reference barriers [18], application
performance decreases [5, 13].

Systems in the last category [3, 4, 7, 8, 14] overcome ref-

*Foundation for Research and Technology - Hellas (FORTH), Institute of
Computer Science (ICS), Greece

†Department of Computer Science, University of Crete, Greece
‡Australian National University, Australia

erence adjustment overheads and avoid scanning the slow
tier. They allocate a primary managed heap (H1) over the
fast tier and a second managed heap (H2) over the slow tier,
reserving a portion of the fast tier as a cache for H2. The
garbage collector maintains only cross-heap references while
it avoids scanning objects in the slow tier, reducing GC time.
However, these approaches divide the fast tier between H1
and the cache for H2 statically at JVM launch, leading to two
main problems.
Problem #1: Requiring hand-tuning configuration. Find-
ing which portion of the fast tier must be reserved as a cache
to yield good performance requires iterative adjustments and
experimentation. Users may need to search for a suitable con-
figuration whenever they change dataset size or application.
These experimentations are time-consuming and impractical
in real-life deployments.
Problem #2: Changing application behavior. Applica-
tions have dramatically different memory requirements at
different periods. H1 should use enough space in the fast tier
to avoid memory pressure and frequent GC cycles. However,
increasing the cache for H2 results in faster access to ob-
jects on the slow tier. Thus, the static division of the fast tier
between H1 and the cache for H2 cannot adapt to dynamic
changing application behavior.

2 DynaHeap Design Overview

We propose DynaHeap1, a system that dynamically divides a
fixed of DRAM budget between the primary heap (H1) and
cache for the second heap (H2). DynaHeap treats applica-
tions as black boxes and defines distinct rules for memory
tuning between H1 and the H2 cache. It determines whether
to increase H1 or the H2 cache at runtime by tracking GC
and I/O time. DynaHeap uses an adaptation mechanism that
takes decisions to repartition DRAM in each minor GC cycle
when mutator threads are stopped to avoid extra pauses and
synchronization overheads. Although OS memory reclama-
tion leads to memory movement between H1 and H2 cache,
this is performed on-demand, introducing an inherent delay
in observing the resizing action impact. For this purpose,
we extend DynaHeap adaptation mechanism to a finite state
machine that includes wait states, used to stop making new
decisions until their effect occurs.

1This work is partially funded by a grant from the European Union’s
Horizon 2020 programme under grant agreement No 10048318 (AERO).

1



References

[1] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKinley,
and Lieven Eeckhout. Write-rationing garbage collec-
tion for hybrid memories. In Proceedings of the 39th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’18, pages 62–77,
New York, NY, USA, 2018. Association for Computing
Machinery.

[2] Shoaib Akram, Jennifer B. Sartor, Kathryn S. McKin-
ley, and Lieven Eeckhout. Crystal gazer: Profile-driven
write-rationing garbage collection for hybrid memories.
SIGMETRICS Perform. Eval. Rev., 47(1):21–22, Decem-
ber 2019.

[3] Michael D. Bond and Kathryn S. McKinley. Tolerating
memory leaks. In Proceedings of the 23rd ACM SIG-
PLAN Conference on Object-Oriented Programming
Systems Languages and Applications, OOPSLA ’08,
pages 109–126, New York, NY, USA, 2008. Associa-
tion for Computing Machinery.

[4] Kim T. Briggs, Baoguo Zhou, and Gerhard W. Dueck.
Cold object identification in the java virtual machine.
Software: Practice and Experience, 47(1):79–95, 2017.

[5] Zixian Cai, Stephen M. Blackburn, Michael D. Bond,
and Martin Maas. Distilling the real cost of production
garbage collectors. In 2022 IEEE International Sympo-
sium on Performance Analysis of Systems and Software
(ISPASS), ISPASS ’22, pages 46–57. IEEE Computer
Society Press, 2022.

[6] Paris Carbone, Asterios Katsifodimos, Stephan Ewen,
Volker Markl, Seif Haridi, and Kostas Tzoumas. Apache
flink: Stream and batch processing in a single engine.
The Bulletin of the Technical Committee on Data Engi-
neering, 38(4), 2015.

[7] Iacovos G. Kolokasis, Giannos Evdorou, Shoaib Akram,
Christos Kozanitis, Anastasios Papagiannis, Foivos S.
Zakkak, Polyvios Pratikakis, and Angelos Bilas. Tera-
heap: Reducing memory pressure in managed big data
frameworks. In Proceedings of the 28th ACM Inter-
national Conference on Architectural Support for Pro-
gramming Languages and Operating Systems, Volume
3, ASPLOS 2023, page 694–709, New York, NY, USA,
2023. Association for Computing Machinery.

[8] Iacovos G. Kolokasis, Anastasios Papagiannis, Polyvios
Pratikakis, Angelos Bilas, and Foivos Zakkak. Say good-
bye to off-heap caches! on-heap caches using memory-
mapped i/o. In Proceedings of the 12th USENIX Con-
ference on Hot Topics in Storage and File Systems, Hot-
Storage ’20, USA, 2020. USENIX Association.

[9] Zhe Li and Mingyu Wu. Transparent and lightweight
object placement for managed workloads atop hybrid
memories. In Proceedings of the 18th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Exe-
cution Environments, VEE ’22, pages 72–80, New York,
NY, USA, 2022. Association for Computing Machinery.

[10] Haoran Ma, Shi Liu, Chenxi Wang, Yifan Qiao,
Michael D. Bond, Stephen M. Blackburn, Miryung
Kim, and Guoqing Harry Xu. Mako: A low-
pause, high-throughput evacuating collector for memory-
disaggregated datacenters. In Proceedings of the 43rd
ACM SIGPLAN International Conference on Program-
ming Language Design and Implementation, PLDI ’22,
pages 92–107, New York, NY, USA, 2022. Association
for Computing Machinery.

[11] SeongJae Park, Madhuparna Bhowmik, and Alexandru
Uta. Daos: Data access-aware operating system. In
Proceedings of the 31st International Symposium on
High-Performance Parallel and Distributed Computing,
HPDC ’22, pages 4–15, New York, NY, USA, 2022. As-
sociation for Computing Machinery.

[12] Sherif Sakr, Faisal Moeen Orakzai, Ibrahim Abdelaziz,
and Zuhair Khayyat. Large-Scale Graph Processing
Using Apache Giraph. Springer Publishing Company,
Incorporated, 1st edition, 2017.

[13] Kunal Sareen and Stephen Michael Blackburn. Bet-
ter understanding the costs and benefits of automatic
memory management. In Proceedings of the 19th In-
ternational Conference on Managed Programming Lan-
guages and Runtimes, MPLR ’22, page 29–44, New
York, NY, USA, 2022. Association for Computing Ma-
chinery.

[14] Yan Tang, Qi Gao, and Feng Qin. {LeakSurvivor}:
Towards safely tolerating memory leaks for {Garbage-
Collected} languages. In 2008 USENIX Annual Techni-
cal Conference (USENIX ATC 08), USENIX ATC ’08,
pages 307–320, USA, 2008. USENIX Association.

[15] Chenxi Wang, Huimin Cui, Ting Cao, John Zigman,
Haris Volos, Onur Mutlu, Fang Lv, Xiaobing Feng, and
Guoqing Harry Xu. Panthera: Holistic memory man-
agement for big data processing over hybrid memories.
In Proceedings of the 40th ACM SIGPLAN Conference
on Programming Language Design and Implementation,
PLDI 2019, page 347–362. Association for Computing
Machinery, June 2019.

[16] Chenxi Wang, Haoran Ma, Shi Liu, Yuanqi Li, Zhenyuan
Ruan, Khanh Nguyen, Michael D. Bond, Ravi Ne-
travali, Miryung Kim, and Guoqing Harry Xu. Semeru:
A memory-disaggregated managed runtime. In 14th
USENIX Symposium on Operating Systems Design and

2



Implementation, OSDI ’20, pages 261–280, USA, 2020.
USENIX Association.

[17] Chenxi Wang, Haoran Ma, Shi Liu, Yifan Qiao,
Jonathan Eyolfson, Christian Navasca, Shan Lu, and
Guoqing Harry Xu. MemLiner: Lining up tracing and
application for a Far-Memory-Friendly runtime. In 16th
USENIX Symposium on Operating Systems Design and
Implementation, OSDI ’22, pages 35–53, USA, 2022.
USENIX Association.

[18] Albert Mingkun Yang, Erik Österlund, Jesper Wilhelms-
son, Hanna Nyblom, and Tobias Wrigstad. Thingc: Com-
plete isolation with marginal overhead. In Proceedings
of the 2020 ACM SIGPLAN International Symposium
on Memory Management, ISMM ’20, pages 74–86, New
York, NY, USA, 2020. Association for Computing Ma-
chinery.

[19] Yanfei Yang, Mingyu Wu, Haibo Chen, and Binyu Zang.
Bridging the performance gap for copy-based garbage
collectors atop non-volatile memory. In Proceedings of
the Sixteenth European Conference on Computer Sys-
tems, EuroSys ’21, page 343–358. Association for Com-
puting Machinery, April 2021.

[20] Litong You, Tianxiao Gu, Shengan Zheng, Jianmei Guo,
Sanhong Li, Yuting Chen, and Linpeng Huang. Jpdheap:
A jvm heap design for pm-dram memories. In 2021
58th ACM/IEEE Design Automation Conference (DAC),
pages 31–36, 2021.

[21] Matei Zaharia, Mosharaf Chowdhury, Michael J.
Franklin, Scott Shenker, and Ion Stoica. Spark: Cluster
computing with working sets. In Proceedings of the 2nd
USENIX Conference on Hot Topics in Cloud Computing,
HotCloud ’10, USA, 2010. USENIX Association.

3


	Motivation
	DynaHeap Design Overview

