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1 Motivation

With the high growth of data, managed big data frameworks,
such as Spark [21], Giraph [12], and Flink [6], need to pro-
cess larger datasets than server memory. However, the DRAM
available within each single server scales slower than the
data growth rate due to physical scaling limitations [11]. For
this purpose, existing solutions extend the managed heap of
big data applications over block-addressable fast storage de-
vices (e.g., NVMe SSDs) [3, 4, 7, 8, 14], byte-addressable
non-volatile memories (NVM) [1, 2, 9, 15, 18–20], or remote
memory [10, 16, 17]. While these alternatives offer higher
capacity than DRAM, they have higher latency and lower
throughput, constituting a slower memory tier. Existing sys-
tems use three main strategies for organizing the managed
heap over the fast and slow memory tiers: (1) uniform man-
aged heap with caching, (2) partitioned managed heap without
caching, and (3) partitioned managed heap with caching.

Systems in the first category [10, 16, 17] allocate the man-
aged heap over the slow tier and use the fast tier as a cache.
The OS hides memory tiers’ heterogeneity and transparently
fetches objects from the slow to the fast tier. This transparency
eliminates the need for the JVM to maintain extra data struc-
tures to track objects’ locations within the memory hierarchy
and to adjust object references during promotions or demo-
tions between the tiers. However, this approach leads to high
garbage collection (GC) cost because the garbage collector
scans objects in the slow tier, resulting in excessive swapping.

Systems in the second category [1, 2, 9, 15, 18, 19] partition
the memory address space into fast and slow tiers, reducing
swapping. They allocate the young generation and a portion
of the old generation of the managed heap on the fast tier
and the remaining on the slow tier. Instead of page swapping,
they explicitly move objects between the fast and the slow
tiers, which requires updating their references. This reference
adjustment becomes prohibitively expensive for frequent ob-
ject relocation as the garbage collector must scan objects in
the slow tier to update their references. Even using lazy refer-
ence adjustment with load reference barriers [18], application
performance decreases [5, 13].

Systems in the last category [3, 4, 7, 8, 14] overcome ref-
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erence adjustment overheads and avoid scanning the slow
tier. They allocate a primary managed heap (H1) over the
fast tier and a second managed heap (H2) over the slow tier,
reserving a portion of the fast tier as a cache for H2. The
garbage collector maintains only cross-heap references while
it avoids scanning objects in the slow tier, reducing GC time.
However, these approaches divide the fast tier between H1
and the cache for H2 statically at JVM launch, leading to two
main problems.
Problem #1: Requiring hand-tuning configuration. Find-
ing which portion of the fast tier must be reserved as a cache
to yield good performance requires iterative adjustments and
experimentation. Users may need to search for a suitable con-
figuration whenever they change dataset size or application.
These experimentations are time-consuming and impractical
in real-life deployments.
Problem #2: Changing application behavior. Applica-
tions have dramatically different memory requirements at
different periods. H1 should use enough space in the fast tier
to avoid memory pressure and frequent GC cycles. However,
increasing the cache for H2 results in faster access to ob-
jects on the slow tier. Thus, the static division of the fast tier
between H1 and the cache for H2 cannot adapt to dynamic
changing application behavior.

2 DynaHeap Design Overview

We propose DynaHeap1, a system that dynamically divides a
fixed of DRAM budget between the primary heap (H1) and
cache for the second heap (H2). DynaHeap treats applica-
tions as black boxes and defines distinct rules for memory
tuning between H1 and the H2 cache. It determines whether
to increase H1 or the H2 cache at runtime by tracking GC
and I/O time. DynaHeap uses an adaptation mechanism that
takes decisions to repartition DRAM in each minor GC cycle
when mutator threads are stopped to avoid extra pauses and
synchronization overheads. Although OS memory reclama-
tion leads to memory movement between H1 and H2 cache,
this is performed on-demand, introducing an inherent delay
in observing the resizing action impact. For this purpose,
we extend DynaHeap adaptation mechanism to a finite state
machine that includes wait states, used to stop making new
decisions until their effect occurs.

1This work is partially funded by a grant from the European Union’s
Horizon 2020 programme under grant agreement No 10048318 (AERO).
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